with the fact that the carboxyl group is ionized. No $\mathrm{C}-\mathrm{C}$ bond lengths in the benzene ring deviate significantly from the mean value of $1.390 \AA$. The bond length of $\mathrm{C}(4)-\mathrm{O}(10), 1 \cdot 360 \AA$, accords with the corresponding one in p-hydroxybenzoic acid monohydrate. The angle $\mathrm{O}(10)-\mathrm{C}(4)-\mathrm{C}(5), 117 \cdot 4^{\circ}$, is smaller than that of $\mathrm{O}(10)-\mathrm{C}(4)-\mathrm{C}(3), 123 \cdot 3^{\circ}$, as observed in the monohydrate. The mean values of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in the piperidine ring are 1.519 and $1.498 \AA$, respectively. These values are in accordance with 1.505 and $1.497 \AA$ in piperidine hydrochloride (Rérat, 1960), and 1.522 and $1.499 \AA$ in 2,2,6,6-tetramethyl-4-piperi-dinol-1-oxyl (Berliner, 1970), respectively. The bond angles in the piperidine ring are slightly larger than the regular tetrahedral angle.

The authors thank Mr Isao Tanaka and Dr Tamaichi Ashida of the Institute for Protein Research of Osaka University for permission to use their computer programs.

References

Ahmed, F. R. (1970). Crystallographic Computing. Copenhagen: Munksgaard.
Ahmed, F. R. \& De Camp, W. H. (1972). Acta Cryst. B28, 3489-3494.
Berliner, L. J. (1970). Acta Cryst. B26, 1198-1202.
De Camp, W. H. \& Ahmed, F. R. (1972). Acta Cryst. B28, 3484-3489
Fukuyama, K., Ohkura, K., Kashino, S. \& Haisa, M. (1973). Bull. Chem. Soc. Japan, 46, 804-808.

International Tables for X-ray Crystallography. (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
Kashino, S. (1973). Acta Cryst. B29, 1836-1842.
Kashino, S., Sasaki, M. \& Haisa, M. (1973). Bull. Chem. Soc. Japan, 46, 1375-1379.
Kashino, S., Sumida, Y. \& Haisa, M. (1972). Acta Cryst. B 28, 1374-1383.
Okaya, Y. \& Ashida, T. (1967). HBLS 4, The Universal Crystallographic Computing System (I), pp. 65-73. The Crystallographic Society of Japan.
Rérat, C. (1960). Acta Cryst. 13, 72-80.

The Crystal Structure of $\mathbf{S r}_{5} \mathbf{S b}_{3}$

By M. Martinez-Ripoll and G. Brauer
Chemisches Laboratorium der Universität Freiburg, 78 Freiburg (Breisgau), Albertstrasse 21, Germany (BRD)

(Received 12 February 1973; accepted 19 February 1973)

Abstract

$\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ crystallizes as a $\mathrm{Mn}_{5} \mathrm{Si}_{3}$-type structure, space group $P \mathrm{~b}_{3} / \mathrm{mcm}$, with two formula units in a cell of dimensions $a=9 \cdot 496 \pm 0.005, c=7 \cdot 422 \pm 0.005 \AA$. The calculated density is $4 \cdot 602 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure of $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ has been determined by three-dimensional Patterson synthesis. The positional and isotropic thermal parameters were refined by least-squares analysis, yielding a final R value of 0.056 . There is one unusually short distance $\mathrm{Sr}-\mathrm{Sr}$ in chains parallel to the c axis.

Introduction

The binary system $\mathrm{Sr}-\mathrm{Sb}$ was treated by Shchukarev, Morozova \& Kan Kho-in (1957a, b) in a preliminary study. Metallographic observations of cast alloys, thermal analysis and gram-formula volume vs. composition curves indicated the existence of four intermediate phases corresponding to the compounds $\mathrm{SrSb}_{3}, \mathrm{SrSb}, \mathrm{Sr}_{3} \mathrm{Sb}_{2}$ and $\mathrm{Sr}_{2} \mathrm{Sb}$. More recently, Brauer \& Müller (1961) have reported on a compound with tetragonal symmetry and formula $\mathrm{Sr}_{2} \mathrm{Sb}$.

We prepared new samples of Sr-rich alloys in order to solve the crystal structure of the last compound. Powder X-ray diffraction patterns of those samples demonstrated the existence of two compounds in the alloys. One of them, in agreement with Brauer \& Müller (1961), belongs to the tetragonal system. The other compound of the mixture is not tetragonal; the present paper reports on its crystal structure. From this study the formula $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ was deduced for this compound.

Experimental

Single crystals of $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ were prepared by cooling a melt of stoichiometry $4 \mathrm{Sr}+1 \mathrm{Sb}$ from $1430^{\circ} \mathrm{C}$ to room temperature in argon atmosphere with subsequent leaching of the alloy with anhydrous ammonia. Under these conditions the excess of Sr is removed and separated black crystals of $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ with nearly prismatic shape were obtained. They are hard and extremely sensitive to air. Thus they had to be kept under argon. The elements used for synthesis had stated purities of $99 \%(\mathrm{Sr})$ and $99.99 \%(\mathrm{Sb})$.
The symmetry, space group and approximate lattice parameters were determined from Weissenberg photographs taken with $\mathrm{Cu} K \alpha$ radiation. $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ was found to be hexagonal with two formula units in the cell. The systematic absences correspond to three space groups, $P 6_{3} c m, P \overline{6} c 2$ and $P 6_{3} / \mathrm{mcm}$. No piezoelectric properties were found, and the results of the E-value distribution did not conclusively differentiate between centrosymmetric and non-centrosymmetric structures. Anal-
ysis of the Patterson function eliminated the space group $P \bar{\sigma} c 2$, but did not discern between the space groups $P 6_{3} \mathrm{~cm}$ and $P 6_{3} / \mathrm{mcm}$. As discussed later, the space group $P 6_{3} / \mathrm{mcm}$ was assumed.

Precise lattice parameters were obtained by accurate measurements of θ on a diffractometer for several reflexions. The following dimensions were found: $a=9.496 \pm 0.005$ and $c=7.422 \pm 0.005 \AA$. The calculated density is $4.602 \mathrm{~g} \mathrm{~cm}^{-3}$.

The intensity data from eight reciprocal layers perpendicular to the c axis were obtained from a prismatic single crystal with nearly circular cross section ($0 \cdot 26$ mm diameter). A two-circle diffractometer with 2θ scan and filtered Mo $K \alpha$ radiation were used. The intensities were corrected for Lorentz and polarization effects in the usual manner. As the crystal showed strong absorption effects ($\mu R=4 \cdot 0$) in spite of its small size, the due corrections were made assuming cylindrical shape.

Determination of the structure

The first step in the solution of this crystal structure was based on the interpretation of the three-dimensional Patterson function. As mentioned above, the peak distribution in the Patterson synthesis eliminated the space group $P \overline{6} c 2$. All maxima could be explained in terms of the two remaining space groups $\mathrm{P6}_{3} \mathrm{~cm}$ and $P 6_{3} / \mathrm{mcm}$, and in both cases the same centrosymmetric arrangement of atoms was found. Therefore, the centric space group $P 6_{3} / \mathrm{mcm}$ was assumed.

Structure factors based on the Patterson coordinates, assuming isotropic temperature factors of $0.83 \AA^{2} \mathrm{ob}$ tained from the Wilson plot, correspond to $R=0.15$. The f curves for neutral Sr and Sb (Thomas \& Umeda, 1957) corrected for anomalous dispersion were used. The difference electron-density map showed no peaks greater than 2 e \AA^{-3}.

Since the structural arrangement obtained was reasonable from the crystal-chemistry point of view, this structure was refined by the use of the least-squares program ORFLS (Busing, Martin \& Levy, 1962). Several cycles of isotropic refinement gave an R index of 0.056 . A weight of one for each observation was used. The final positional and thermal parameters are shown in Table 1.*

[^0]
Description and discussion of the structure

Fig. 1 shows a view of the structure with partial projection on the (001) plane. The strontium atoms occupy two different crystallographic sites corresponding to the point symmetries $32, \operatorname{Sr}(1)$, and $m m, \operatorname{Sr}(2)$. There is one crystallographic independent Sb atom only, which corresponds to the point symmetry mm .
$\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ crystallizes in the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$-type structure (Aronsson, 1960). Although the principles of this structure have been repeatedly discussed (Parthé, Lux \& Nowotny, 1955; Nowotny, Lux \& Kudielka, 1956; Aronsson, 1960; Schubert, 1964; Bärnighausen, Knau-

Fig. 1. The projection of one unit-cell on (001). The heights of the atoms are given as fractions of the c parameter.

Fig. 2. The structure of $\mathrm{Sr}_{3} \mathrm{Sb}_{3}$ showing a plane atom layer perpendicular to the c axis. The $\operatorname{Sr}(1)$ atoms are between successive layers.

Table 1. Positional and thermal parameters
Standard deviations, multiplied by 10^{5}, are given in parentheses.

	x / a	y / b	z / c	B
$\mathrm{Sr}(1)$	$0.33333(0)$	$0.66667(0)$	$0.50000(0)$	$0.87 \AA^{2}$
$\mathrm{Sr}(2)$	$0.25337(11)$	$0.00000(0)$	$0.75000(0)$	0.98
Sb	$0.39045(6)$	$0.00000(0)$	$0.25000(0)$	0.63

senberger \& Brauer, 1965) we want to point to some peculiarities that may be relevant to the case of $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$. This crystal structure contains plane atom layers which resemble the so-called A layers (Black, 1956) of most of the transition-metal atoms in the so-called $T 2$ phases (Parthé, Lux \& Nowotny, 1955), but an important difference is that the layers in $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$, besides Sr metal atoms, contain antimony atoms (Fig. 2). In a first approximation the antimony atoms form a hexagonal closest-packed arrangement. Each strontium atom of the A layer, $\operatorname{Sr}(2)$, has fifteen-neighbours, whereas the $\operatorname{Sr}(1)$ atoms between two successive A layers have fourteen (Table 2). The octahedral voids (at $0,0,0$ and $0,0, \frac{1}{2}$) between two layers are empty.

The crystal structure of $\mathrm{Sr}_{5} \mathrm{Sb}_{3}$ can be also easily described in terms of SbSr_{9} units. Each one of these units contains four strontium atoms $\operatorname{Sr}(1)$ and five $\mathrm{Sr}(2)$. These nine Sr atoms are arranged at the corners of a very distorted tetrakaidecahedron whose centre is

Fig. 3. Arrangement of strontium atoms around Sb . The bond lengths in \AA are given. Two mirror planes pass through Sb , containing the two $\operatorname{Sr}(2)$ and the two $\operatorname{Sr}\left(2^{1}\right)$ atoms respectively.
occupied by the antimony atom. Such a unit is shown in Fig. 3. The four strontium atoms of type $\operatorname{Sr}(1)$ are at $3.470 \AA$ from the Sb atom. However, the distances $\mathrm{Sb}-\mathrm{Sr}(2)$ are not all equal; two $\mathrm{Sr}(2)$ atoms are at $3.258 \AA$ and one is at $3 \cdot 382 \AA$. The two remaining $\mathrm{Sb}-\mathrm{Sr}(2)$ distances are significantly greater ($3.933 \AA$) and correspond to an elongation of $0.536 \AA(\sim 16 \%)$ compared to the average of the other seven distances.
Each SbSr_{9} group shares its nine strontium atoms with other groups, but not all the Sr atoms are equally shared. The $\operatorname{Sr}(1)$ atoms are common to six groups and occupy the holes between two adjacent layers (Figs. 1 and 2). The six $\mathrm{Sb}-\mathrm{Sr}(1)$ distances are $3 \cdot 470 \AA$. This situation implies a very short $\operatorname{Sr}(1)-\operatorname{Sr}(1)$ distance in the \mathbf{c} direction ($3.711 \AA$) compared with the value of $4 \cdot 34 \AA$ obtained from the metallic radius of this atom for coordination number 14 (Pauling, 1947). The $\operatorname{Sr}(2)$ atoms, on the other hand, are shared among five SbSr_{9} groups only, corresponding to the arrangement shown in Fig. 4 and to an averaged $\mathrm{Sr}(2)-\mathrm{Sb}$ distance of 3.553 A.

The mean value of $3 \cdot 516 \AA$ for the $\mathrm{Sb-Sr}$ distance in the SbSr_{9} group is certainly appreciably shorter than would be predicted ($3.72 \AA$) from the sum of metallic radii given by Pauling (1947) and assuming coordination numbers of 9,14 and 15 for $\mathrm{Sb}, \mathrm{Sr}(1)$ and $\operatorname{Sr}(2)$ respectively. This result may be due to the possibility of significant effects resulting from electron transfer or from partial ionic character of bonds (Pauling, 1950), effects which are expected to give a large correcting term to the normal metallic radii of the elements in the case of alloys between hypoelectronic and hyperelectronic atoms. These effects could also explain the uncommon short distances $\operatorname{Sr}(1)-\operatorname{Sr}(1)$ mentioned above ($3 \cdot 711 \AA$) with the assumption of a partial positive charge on these atoms. The results appearing in the structures of $\mathrm{SrMgX}(\mathrm{X}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ (Eisenmann, Schäfer \& Weiss, 1972) indicate also that the element strontium in those compounds must be considered as having a smaller radius than that expected.

Table 2. Interatomic distances

Estimated standard deviation $\pm 0.006 \AA$.					
$\mathrm{Sr}(1)-\mathrm{Sb}$	3.470 §	($\times 6$)	$\mathrm{Sb}-\mathrm{Sr}(2)$	3.258	($\times 2$)
$\mathrm{Sr}(1)-\mathrm{Sr}(1)$	3.711	$(\times 2)$	$\mathrm{Sb}-\mathrm{Sr}(2)$	3.382	($\times 1$)
$\mathrm{Sr}(1)-\mathrm{Sr}(2)$	4.055	$(\times 6)$	$\mathrm{Sb}-\mathrm{Sr}(1)$	$3 \cdot 470$	($\times 4$)
			$\stackrel{\mathrm{Sb-Sr}}{\text { Sb }}$ (2)	3.933	$(\times 2)$
$\mathrm{Sr}(2)-\mathrm{Sb}$	3.258 A	$(\times 2)$	$\mathrm{Sb}-\mathrm{Sb}$	$4 \cdot 254$	($\times 2$)
$\mathrm{Sr}(2)-\mathrm{Sb}$	3.382	$(\times 1)$			
$\mathrm{Sr}(2)-\mathrm{Sb}$	3.933	$(\times 2)$			
Sr(2)- $\mathrm{Sr}(1)$	4.055	$(\times 4)$			
Sr(2)-Sr(2)	4.167	$(\times 2)$			
$\mathrm{Sr}(2)-\mathrm{Sr}(2)$	4.423	$(\times 4)$			
Averages					
$\mathrm{Sr}(1)-\mathrm{Sr}(1)$	3.711 §		$\mathrm{Sb}-\mathrm{Sr}(1)$	$3 \cdot 470$	
$\mathrm{Sr}(1)-\mathrm{Sr}(2)$	4.055		$\mathrm{Sb-Sr}(2)$	3.553	
$\mathrm{Sr}(1)-\mathrm{Sr}$	3.969		$\mathrm{Sb}-\mathrm{Sr}$	3.516	
Sr(2)-Sr(1)	$4.055 \AA$				
$\underset{\substack{\text { Sr } \\ \mathrm{Sr}(2)-\mathrm{Sr} \\ \text { - } \\ \text { c }}}{ }$	4.337 4.225				
$\mathrm{Sr}(2)-\mathrm{Sr}$	$4 \cdot 225$				

A list of all interatomic distances is shown in Table 2. Several valence angles are reported in Table 3.

Table 3. Valence angles around Sb

Estimated standard deviation $\pm 0 \cdot 1^{\circ}$.	
$\mathrm{Sr}\left(2^{1}\right)-\mathrm{Sb}-\mathrm{Sr}(2)$	$75 \cdot 3^{\circ}(\times 4)$
$\mathrm{Sr}\left(2^{1}\right)-\mathrm{Sb}-\mathrm{Sr}\left(2^{1}\right)$	$141.3(\times 1)$
$\mathrm{Sr}(2)-\mathrm{Sb}-\mathrm{Sr}(2)$	79.5 ($\times 1$)
$\mathrm{Sr}(1)-\mathrm{Sb}-\mathrm{Sr}(1)$	$64 \cdot 7(\times 2)$
$\mathrm{Sr}(1)-\mathrm{Sb}-\mathrm{Sr}\left(1^{1}\right)$	$104 \cdot 4(\times 2)$
$\mathrm{Sr}(1)-\mathrm{Sb}-\mathrm{Sr}\left(2^{2}\right)$	72.6 ($\times 4$)
$\mathrm{Sr}\left(2^{1}\right)-\mathrm{Sb}-\mathrm{Sr}(1)$	66.1 ($\times 4$)

The numerical calculations were carried out on the 7040 IBM and 1108 UNIVAC computers of the University of Freiburg, Germany. We acknowledge the facilities given by Huber Diffraktions-Technik in order to obtain the intensity data. We also acknowledge the aid given by the Deutsche Forschungs-Gemeinschaft which made available several laboratory facilities.
We are very grateful to the Alexander von Humboldt Foundation for a research grant given to M.M.R. which made possible the elaboration of this work.

References

Aronsson, B. (1960). Acta Chem. Scand. 14, 1414-1418.
Bärnighausen, H., Knausenberger, M. \& Brauer, G. (1965). Acta Cryst. 19, 1-6.

Black, P. J. (1956). Acta Met. 4, 172-192.
Brauer, G. \& Müller, O. (1961). Angew. Chem. 73, 169.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Eisenmann, B., Schäfer, H. \& Weiss, A. (1972). Z. anorg. allgem. Chem. 391, 241-254.

Fig.4. The antimony atom arrangement around $\mathrm{Sr}(2)$. The bond lengths in \AA, and the corresponding valence angles are given.

Nowotny, H., Lux, B. \& Kudielka, H. (1956). Mh. Chem. 87, 447-470.
Parthé, E., Lux, B. \& Nowotny, H. (1955). Mh. Chem. 86, 859-867.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542-553.
Pauling, L. (1950). Proc. Nat. Acad. Sci. Wash. 36, 533538.

Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen, p. 305. Berlin, Göttingen, Heidelberg: SpringerVerlag.
Shchukarev, S. A., Morozova, P. \& Kan Kho-in. (1957a). Zh. Obshch. Khim. 27, 1737-1740.
Shchukarev, S. A., Morozova, P. \& Kan Kho-in. (1957b). J. Gen. Chem. USSR. 27, 1803-1805.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293-303.

[^0]: * The table of observed and calculated structure factors has been deposited at the National Lending Library, England (Supplementary Publication No. SUP 30173). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.

